
 International Journal of Computer Trends and Technology Volume 71 Issue 11, 65-69, November 2023

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V71I11P109 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

The Future of Web Development: An In-depth Analysis

of Micro-Frontend Approaches

Nilesh Savani

Independent Researcher, Montreal, Canada.

Corresponding Author : nileshsavani09@gmail.com

Received: 22 September 2023 Revised: 26 October 2023 Accepted: 13 November 2023 Published: 30 November 2023

Abstract - Web development has witnessed transformative shifts, evolving from simple, text-centric pages to dynamic, user-

engaging platforms. This evolution, marked by the introducing of technologies like CSS, JavaScript, and AJAX, has led to the

rise of Single Page Applications (SPAs) offering desktop-like experiences. With the proliferation of mobile devices, frameworks

like Bootstrap and libraries such as React and Angular have become pivotal. Concurrently, backend architectures have

transitioned from monolithic structures to modular constructs like microservices. This research delves into the emerging

paradigm of micro-frontends, exploring various methodologies for their implementation. These methodologies include the

Single-SPA “meta framework”, multiple SPAs with distinct URLs, and IFrames with Window.postMessage APIs, a shared events

bus, Varnish Cache integration, standardized web components, and “Blackbox” React components. Each approach offers

unique advantages and challenges, emphasizing modularity, encapsulation, and interoperability. The research concludes that

the choice of micro-frontend methodology should align with project-specific needs. As web development continues its innovation

trajectory, understanding and harnessing these methodologies become crucial for building scalable, maintainable, and efficient

web applications.

Keywords - Web development, Microservices, Micro-frontends, Single Page Applications (SPAs), Service-Oriented Architecture

(SOA), Responsive designs.

1. Introduction
The web development landscape has evolved

dramatically, driven by rapid technological advances and

shifting user needs. From its early days of static, text-based

pages, the web has transformed into a dynamic, interactive

platform, largely due to the introduction of CSS [2],

JavaScript, and AJAX [8] in the 1990s and 2000s. These

technologies catalyzed a shift towards more engaging and

responsive websites, eventually leading to the development of

Single Page Applications (SPAs) that mimic desktop

application experiences.

Concurrently, the proliferation of mobile devices

necessitated adaptive web designs, propelling frameworks like

Bootstrap and frontend libraries such as React and Angular to

the forefront of web development. Alongside these frontend

evolutions, backend architectures have also transformed,

transitioning from monolithic structures to modular,

microservices-based designs. This shift has enabled greater

flexibility and scalability in web development, especially as

applications grow in complexity and size.

Despite these advancements, a critical gap persists in

integrating microservice [7] principles into frontend

development - a concept termed “micro-frontends.” While the

backend world has widely embraced and understood the

benefits of microservices, applying similar modular principles

to the frontend remains under-explored and under-theorized.

This research aims to bridge this gap by delving into various

methodologies of micro-frontend implementation and

evaluating their effectiveness and practicality in modern web

development scenarios.

The primary challenge in adopting micro-frontends lies in

balancing modularity, interoperability, and performance.

While backend microservices have established patterns and

practices for effective implementation, similar frameworks are

nascent or fragmented in the frontend realm. This raises

critical questions: How can we effectively decompose

frontend monoliths into smaller, independent, and manageable

components? What are the potential performance

implications, and how do we ensure seamless integration

across different frameworks and technologies?

In addressing these questions, this research seeks to

comprehensively analyze micro-frontend methodologies,

evaluating their strengths, limitations, and applicability in

current and future web development landscapes.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Nilesh Savani / IJCTT, 71(11), 65-69, 2023

66

Fig. 1 Monolith frontend

2. Literature Review

The field of web development has experienced numerous

paradigm shifts, each influenced by technological

advancements and changing user demands. This review traces

these shifts, focusing particularly on the evolution leading to

the current interest in micro-frontends. Initially, web

development was centered around static pages, primarily for

information sharing. The introduction of HTML marked the

beginning of this era. However, it was not until the adoption

of CSS and JavaScript in the late 1990s that web pages began

to evolve into more dynamic and interactive entities (Lie &

Bos, 1996).

The introduction of AJAX in the early 2000s was a

pivotal moment, as documented by Garrett (2007). It enabled

asynchronous data loading, paving the way for Single Page

Applications (SPAs). This advancement significantly

enhanced user experiences by reducing page load times and

creating a more fluid, app-like interaction. With the rise of

mobile devices, responsive design became crucial.

Frameworks like Bootstrap emerged, revolutionizing how

developers approach cross-platform compatibility.

Similarly, frontend libraries like React and Angular, as

noted by Fowler and Lewis (2014), have been instrumental in

creating more sophisticated, interactive web applications. On

the backend side, there was a notable shift from monolithic

architectures to microservices (Fowler & Lewis, 2014). This

transition, characterized by breaking down applications into

smaller, independently deployable services, improved

scalability and flexibility in web development. Building on the

principles of microservices, the concept of micro-frontends

has recently emerged as a significant area of interest. Geers

(2019) and Söderlund (n.d.) have explored this in their works,

discussing how micro-frontends extend the microservice

architecture to the frontend. This approach involves breaking

down frontend monoliths into smaller, more manageable

components, each capable of functioning independently.

While existing literature provides insights into the

evolution and technical aspects of these advancements, there

is a noticeable gap in comprehensive studies that holistically

analyze micro-frontends. Most current research tends to focus

on the benefits and implementation strategies within specific

frameworks or contexts, with less emphasis on comparative

analysis and practical implications in diverse web

development scenarios. This study aims to fill this gap by

providing a comparative analysis of various micro-frontend

methodologies, assessing their practical applications, and

addressing challenges in implementing these approaches in

modern web development.

3. Methodology
Existing research on micro-frontends primarily focuses

on the advantages and implementation strategies within

specific technological contexts. For instance, studies like

those by Geers (2019) and Söderlund (n.d.) have delved into

the conceptual understanding of micro-frontends as an

extension of microservices to frontend development. While

these provide valuable insights into the theoretical foundation

of micro-frontends, there is a lack of comprehensive analysis

comparing the practical implications of different

implementation methodologies.

In contrast, this research bridges this gap by discussing

the theoretical aspects and critically analyzing how each

approach fares in practical scenarios. For example, while

using IFrames for micro-frontends is well-documented for its

encapsulation benefits, this study goes a step further

byexamining its performance implications and

communication challenges, offering a more nuanced

understanding. Similarly, while using a shared events bus is a

known practice, this study offers insights into its impact on

system stability and resource management, which is often

overlooked in existing literature.

Furthermore, this research introduces a comparative

dimension largely absent in current studies. Systematically

comparing methodologies like Single-SPA and Varnish Cache

integration offers a unique perspective that aids developers

and architects in making informed decisions based on their

specific project needs and constraints.

3.1. Single-SPA “meta framework” [3]
Single-SPA emerges as a revolutionary solution in the

micro-frontend landscape, functioning primarily as an

advanced router that facilitates the integration of multiple

frameworks on a single page without needing page refreshes.

At its inception, the Single-SPA application is initialized,

laying the groundwork for the subsequent integration of

diverse micro-frontends. Each micro-frontend is then

registered with a unique identifier and an associated activity

function, determining its activation based on the current route.

To ensure seamless integration, micro-frontends must adhere

to specific lifecycle methods prescribed by Single-SPA: the

‘Bootstrap’ for initial setup, ‘Mount’ for rendering to the

DOM, and ‘Unmount’ for effective cleanup. A standout

Monolith Frontend

Profile Service Billing Service Payment Service

Nilesh Savani / IJCTT, 71(11), 65-69, 2023

67

feature of Single-SPA is its ability to blend various

frameworks on one page cohesively, achieved through

specialized helper libraries tailored for each framework. These

libraries ensure that frameworks like React, Vue, and Angular

can coexist harmoniously on a single page, providing

developers with the flexibility to leverage the strengths of each

while maintaining a unified user experience. Single-SPA

encapsulates a holistic approach to micro-frontend

implementation, championing modularity, interoperability,

and user-centric design.

Fig. 2 Micro frontends architecture using different frameworks

3.2. Multiple Single-Page Apps with Distinct URLs

The “Multiple single-page apps with distinct URLs”

methodology underscores the importance of modularity in

modern web development. Instead of a monolithic application,

this approach advocates for developing separate Single Page

Applications (SPAs), with each SPA catering to a specific

segment or feature of the overarching application. This

segmentation not only enhances manageability but also

optimizes performance, as users only load the specific SPA

they interact with.

A pivotal component of this methodology is the

implementation of centralized routing or load balancing. This

ensures that user requests are efficiently directed to the

appropriate SPA, optimizing resource utilization and reducing

latency. Such a system can be likened to a well-orchestrated

traffic management system, where each request (or ‘vehicle’)

is directed to its destination without congestion or bottlenecks.

Another cornerstone of this approach is the strategic

utilization of shared components. Instead of reinventing the

wheel for each SPA, common functionalities or components

are developed once and shared across SPAs using package

managers like npm or yarn. This not only streamlines

development but also ensures consistency across the different

SPAs.

Lastly, state management is a crucial consideration in this

methodology. Given each SPA’s isolated nature, it is

necessary to manage and synchronize application states

efficiently across them. This can be achieved through browser

storage mechanisms like LocalStorage or SessionStorage. For

more complex applications, centralized state management

solutions, such as Redux or Vuex, can be employed. These

tools ensure that data remains consistent across SPAs,

providing users with a seamless and coherent experience.

In summary, the “Multiple single-page apps with distinct

URLs” approach is a testament to the evolving nature of web

development, emphasizing modularity, efficiency, and user-

centric design. By segmenting applications into distinct SPAs,

optimizing routing, sharing components, and managing state

effectively, this methodology offers a robust framework for

building scalable and maintainable web applications.

3.3. IFrames with Window.postMessage APIs

The “IFrames with Window.postMessage APIs”

approach offers a unique methodology for implementing

micro-frontends by leveraging the encapsulation capabilities

of IFrames. At its core, this method is centered around

embedding micro-applications as standalone entities within

IFrames, ensuring each micro-frontend operates in a well-

defined, isolated environment. This isolation is pivotal, as it

guarantees that micro-apps run independently, minimizing

potential interference or overlap with other application parts.

A significant advantage of this encapsulation is the

enhanced security and separation it provides, especially when

integrating third-party components or when different parts of

an application need to be sandboxed from each other.

However, a challenge arises when these isolated micro-

frontends need to communicate or share data. This is where

the Window.postMessage method comes into play. It

facilitates cross-origin communication, allowing data to be

securely passed between the main window and the IFrame or

even between multiple IFrames. This ensures that each micro-

frontend remains isolated in its own IFrame, not entirely cut

off from the rest of the application or other micro-frontends.

To further enhance the user experience, dynamic resizing

mechanisms are integrated. These mechanisms ensure that the

IFrames adjust their dimensions based on the content they

house, providing a seamless and consistent visual experience

for the user. This is crucial, as static or improperly sized

IFrames can lead to content truncation or unsightly scroll bars,

detracting from the user experience.

In essence, the “IFrames with Window.postMessage

APIs” methodology presents a balanced blend of isolation and

integration. By encapsulating micro-frontends within IFrames

and leveraging the Window.postMessage method for secure

communication, it offers a robust solution for building

modular, scalable, and interactive web applications, all while

ensuring a smooth and cohesive user experience.

Nilesh Savani / IJCTT, 71(11), 65-69, 2023

68

3.4. Shared events bus

The “Shared Events Bus” methodology is rooted in an

event-driven architecture, emphasizing modularity and

communication efficiency in micro-frontends. Central to this

approach is establishing an event bus, acting as a

communication hub. This bus facilitates the emission and

reception of events, allowing micro-frontends to interact and

share data without direct coupling. Each micro-frontend can

emit events to and listen for events from this central bus,

ensuring synchronized and coordinated behavior across the

application. This decoupled communication mechanism

enhances modularity, as each micro-frontend operates

independently but can still interact with others as needed.

However, with the continuous exchange of events, there

is a potential risk of memory leaks. To mitigate this, the

methodology incorporates efficient cleanup mechanisms.

These mechanisms ensure that associated resources are

released once an event is processed or if a micro-frontend is

no longer active, preventing unnecessary memory

consumption. In summary, the “Shared Events Bus” approach

offers a streamlined solution for micro-frontend

communication, balancing independence with interactivity

while prioritizing application performance and resource

efficiency.

3.5. Varnish Cache Integration [10]

The Varnish Cache methodology, traditionally employed

as a web accelerator, is innovatively adapted for micro-

frontend integration. At its core, Varnish Cache is configured

as a reverse proxy, directing client requests to appropriate

micro-frontends. This setup facilitates content aggregation

from various micro-frontends, presenting a unified and

cohesive user interface. Beyond mere content routing, a

significant advantage of this approach lies in strategic cache

management. Varnish Cache stores frequently accessed data,

ensuring rapid content delivery and reducing the load on

backend systems. By leveraging this caching mechanism,

micro-frontends can achieve faster load times and enhanced

performance. In essence, the Varnish Cache approach offers a

dual benefit for micro-frontend architectures: seamless

integration of diverse micro-applications and optimized

content delivery through intelligent caching.

3.6. Web Components [11]

Micro-frontends, in the context of modern web

development, are increasingly being visualized and

implemented as standardized web components. This paradigm

shift aims to harness the power of web components to create

reusable, encapsulated, and framework-agnostic frontend

modules. At the heart of this approach is the definition of

custom elements. These elements, defined by developers,

extend the existing HTML vocabulary, allowing for creation

of bespoke tags and components tailored to specific

application needs.

A crucial aspect of this methodology is using the Shadow

DOM, a foundational technology behind web components.

The Shadow DOM provides a mechanism to encapsulate the

internal structure, style, and behavior of a component,

ensuring that the component’s internal complexities remain

hidden and its styles and scripts do not interfere with the

broader application.

This encapsulation ensures that micro-frontends when

implemented as web components, can coexist harmoniously

within a larger application without risking style clashes or

script conflicts.

Perhaps the most compelling advantage of this approach

is its framework of agnosticism. Once defined, these

standardized web components can be seamlessly integrated

into any web application framework, React, Vue, Angular, or

others. This offers unparalleled flexibility, as developers can

choose the best framework for their needs without being

constrained by their choice of micro-frontend architecture.

In summary, conceptualizing micro-frontends as

standardized web components presents a forward-thinking

approach to frontend development, emphasizing reusability,

encapsulation, and framework independence, setting the stage

for more modular and maintainable web applications.

3.7. “Blackbox” React Components

The methodology centered on “Blackbox” React

components emphasizes encapsulation and modular design

within the React framework. At its core, this approach

involves the development of standard React components, but

with a twist: the internal logic of these components is

intentionally obscured or “blackboxed.” This ensures that

each component serves as a standalone unit, with its internal

workings hidden from the broader application, promoting a

clear separation of concerns.

A fundamental aspect of this methodology is data

management. Instead of relying on global state or intricate

data flow mechanisms, these encapsulated React components

primarily manage data through props and callback functions.

Props, short for “properties,” allow parent components to pass

data down to child components. In tandem, callback functions

facilitate upward data flow, enabling child components to

communicate back to their parents. This bidirectional data

flow ensures that each component remains both independent

and integrable within a larger application context.

Another pivotal feature of this approach is the emphasis

on encapsulated styling. By ensuring that styles defined for a

particular component do not inadvertently affect other parts of

the application, this methodology promotes visual

consistency. It reduces the risk of unintended design

Nilesh Savani / IJCTT, 71(11), 65-69, 2023

69

alterations.

In essence, the “Blackbox” React components

methodology offers a structured approach to React

development. By championing encapsulation in both logic and

design, it ensures that components are both modular and

interoperable, paving the way for scalable, maintainable, and

cohesive React applications.

4. Conclusion
The Conclusions section should clearly explain the main

findings and implications of the work, highlighting its

importance and relevance.

The realm of web development is in a state of continuous

evolution, with micro-frontends emerging as a significant

architectural paradigm. Drawing from various methodologies,

this research has illuminated the multifaceted nature of micro-

frontend implementation. Each approach, while having its

merits, also presents unique challenges that developers must

navigate.

The Single-SPA “meta framework” stands out for its

ability to integrate diverse frameworks harmoniously, making

it a potential frontrunner for projects that aim to leverage

multiple technologies. On the other hand, the simplicity and

modularity of the Multiple SPAs approach might appeal to

projects that prioritize clear segmentation.

The encapsulation provided by IFrames is commendable,

but developers must be wary of potential performance pitfalls.

Similarly, while the shared events bus offers a decoupled

communication mechanism, it demands rigorous event

management to ensure system stability.

Varnish Cache, with its content aggregation capabilities,

can be a boon for projects that require rapid content delivery.

However, cache management strategies need careful

consideration. The standardization offered by web

components is promising, especially for projects that seek

framework independence. Lastly, the “Blackbox” React

components approach, with its structured methodology, is

well-suited for projects entrenched in the React ecosystem.

In summation, the choice of micro-frontend

implementation methodology should be dictated by the

specific needs and constraints of the project. As the digital

landscape continues to evolve, it is imperative for developers

and architects to stay abreast of these methodologies, ensuring

that they harness the full potential of micro-frontends to

deliver scalable, maintainable, and high-performing web

applications.

References

[1] Michael Geers, “Micro Frontends - Extending the Microservice Idea to Frontend Development,” 2019. [Google Scholar] [Publisher Link]

[2] Håkon Wium Lie, and Bert Bos, “Cascading style sheets, level 1,” W3C, 1996. [Google Scholar] [Publisher Link]

[3] Single-spa framework, Single-spa. [Online]. Available: https://single-spa.js.org/docs/create-single-spa/#--framework

[4] Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, Pearson Education, 1995. [Google Scholar]

[Publisher Link]

[5] A. Leff, and J.T. Rayfield, “Web-Application Development using the Model/View/Controller Design Pattern,” Proceedings Fifth IEEE

International Enterprise Distributed Object Computing Conference, pages 118-127, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[6] Mark Endrei et al., IBM: Patterns: Service-Oriented Architecture and Web Services, IBM Redbooks, 2004. [Google Scholar] [Publisher

Link]

[7] James Lewis, and Martin Fowler, Microservices, 2014. [Online]. Available: https://martinfowler.com/articles/microservices.html

[8] Jesse James Garrett, “Ajax: A New Approach to Web Applications,” 2007. [Google Scholar] [Publisher Link]

[9] Tom Söderlund, Micro Frontends - A Microservice Approach to Front-End Web Development, Medium, 2017. [Google Scholar]

[Publisher Link]

[10] Bartosz Gałek, Bartosz Walacik, and Paweł Wielądek, Managing Frontend in the Microservices Architecture, Allegro.Tech, 2016.

[Online]. Available: https://blog.allegro.tech/2016/03/Managing-Frontend-in-the-microservices-architecture.html

[11] Including Front-End Web Components into Microservices, Technology Conversations, 2015. [Online]. Available:

https://technologyconversations.com/2015/08/09/including-front-end-web-components-into-microservices

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+M.+Geers.+Micro+frontends+-+extending+the+microservice+idea+to+frontend+development&btnG=
https://micro-frontends.org/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=H.+W.+Lie+and+B.+Bos.+Cascading+style+sheets%2C+level+1.+&btnG=
https://www.w3.org/TR/REC-CSS1-961217
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+Patterns%3A+Elements+of+Reusable+Object-Oriented+Software&btnG=
https://www.google.co.in/books/edition/Design_Patterns_Elements_of_Reusable_Obj/K4qv1D-LKhoC?hl=en&gbpv=0
https://doi.org/10.1109/EDOC.2001.950428
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Web-application+development+using+the+model%2Fview%2Fcontroller+design+pattern&btnG=
https://ieeexplore.ieee.org/abstract/document/950428
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Patterns%3A+service-oriented+architecture+and+web+services.+IBM+Redbooks&btnG=
https://www.redbooks.ibm.com/abstracts/sg246303.html
https://www.redbooks.ibm.com/abstracts/sg246303.html
https://martinfowler.com/articles/microservices.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Garrett%2C+Jesse+James.+%E2%80%9CAjax%3A+A+New+Approach+to+Web+Applications&btnG=
https://www.scinapse.io/papers/77717277
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Micro+frontends+-+A+microservice+approach+to+front-end+web+development.+Tom+S%C3%B6derlund&btnG=
https://tomsoderlund.medium.com/micro-frontends-a-microservice-approach-to-front-end-web-development-f325ebdadc16
https://blog.allegro.tech/2016/03/Managing-Frontend-in-the-microservices-architecture.html

